Dec 9, 2021, 3pm-6pm, CHS 41-268
In class, closed-book, one page (letter size, double-sided) cheat sheet allowed.
Make sure to write your name and UID on your answer sheets. Also number the answer sheets.
Q4. (6pts) $\mathbf{A} \in \mathbb{R}^{15 \times 10}$ has rank $5$.
Give the dimensions of the $\mathbf{U}$, $\boldsymbol{\Sigma}$, and $\mathbf{V}$ matrices in the singular value decomposition (SVD) of $\mathbf{A}$.
Give the dimensions of the $\mathbf{U}$, $\boldsymbol{\Sigma}$, and $\mathbf{V}$ matrices in the reduced-form (or thin) SVD of $\mathbf{A}$.
Give the dimensions of the $\mathbf{U}$, $\boldsymbol{\Sigma}$, and $\mathbf{V}$ matrices in the full SVD of $\mathbf{A}$.
Give the dimensions of the $\mathbf{Q}$ and $\boldsymbol{\Lambda}$ matrices in the spectral decomposition of the Gram matrix $\mathbf{A}'\mathbf{A} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}'$.
Give the dimensions of the $\mathbf{Q}$ and $\boldsymbol{\Lambda}$ matrices in the spectral decomposition of the Gram matrix $\mathbf{A}\mathbf{A}' = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}'$.
Give the dimension of the Moore-Penrose generalized inverse $\mathbf{A}^+$.